Chebulae Fructus (CF) is commonly used to make juice, porridge, and also as dietary supplements owing to anti-inflammatory and antioxidant activities. However, astringency affects the palatability and compliance. During taste masking, it is essential to identify astringent mechanism to balance masking needs and efficacy maintenance. Pharmacophore was employed to screen potential astringent compositions, guiding the location of astringency. Qualitative and quantitative analyses were conducted using HPLC. Molecular docking was used to verify astringent components. Saliva proteins (SPs)-CF interaction was analyzed by SDS-PAGE, FT-IR, and fluorescence spectrum to explore astringent mechanism. Gallic acid, corilagin, 1,3,6-tri-O-galloylglucose, chebulagic acid, chebulinic acid, and ellagic acid were identified as key astringent substances. Hydrogen bonding and hydrophobic interaction facilitated the combination of CF with SPs. During interaction, SPs structures underwent folding, and partial α-helix and β-sheet structure transformed into β-turn. Overall, this study firstly elucidate the astringent mechanism of CF, establishing foundations for precise astringency masking.